ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.03027
13
12

Query Focused Multi-Document Summarization with Distant Supervision

6 April 2020
Yumo Xu
Mirella Lapata
    RALM
ArXivPDFHTML
Abstract

We consider the problem of better modeling query-cluster interactions to facilitate query focused multi-document summarization (QFS). Due to the lack of training data, existing work relies heavily on retrieval-style methods for estimating the relevance between queries and text segments. In this work, we leverage distant supervision from question answering where various resources are available to more explicitly capture the relationship between queries and documents. We propose a coarse-to-fine modeling framework which introduces separate modules for estimating whether segments are relevant to the query, likely to contain an answer, and central. Under this framework, a trained evidence estimator further discerns which retrieved segments might answer the query for final selection in the summary. We demonstrate that our framework outperforms strong comparison systems on standard QFS benchmarks.

View on arXiv
Comments on this paper