ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.04647
18
30

Adversarial Genetic Programming for Cyber Security: A Rising Application Domain Where GP Matters

7 April 2020
Una-May O’Reilly
J. Toutouh
M. Pertierra
Daniel Prado Sanchez
Dennis Garcia
Anthony Erb Luogo
Jonathan Kelly
Erik Hemberg
    SILM
    AAML
ArXivPDFHTML
Abstract

Cyber security adversaries and engagements are ubiquitous and ceaseless. We delineate Adversarial Genetic Programming for Cyber Security, a research topic that, by means of genetic programming (GP), replicates and studies the behavior of cyber adversaries and the dynamics of their engagements. Adversarial Genetic Programming for Cyber Security encompasses extant and immediate research efforts in a vital problem domain, arguably occupying a position at the frontier where GP matters. Additionally, it prompts research questions around evolving complex behavior by expressing different abstractions with GP and opportunities to reconnect to the Machine Learning, Artificial Life, Agent-Based Modeling and Cyber Security communities. We present a framework called RIVALS which supports the study of network security arms races. Its goal is to elucidate the dynamics of cyber networks under attack by computationally modeling and simulating them.

View on arXiv
Comments on this paper