ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.04980
11
8

Negation Detection for Clinical Text Mining in Russian

10 April 2020
Anastasia A. Funkner
Ksenia Balabaeva
Sergey Kovalchuk
ArXiv (abs)PDFHTML
Abstract

Developing predictive modeling in medicine requires additional features from unstructured clinical texts. In Russia, there are no instruments for natural language processing to cope with problems of medical records. This paper is devoted to a module of negation detection. The corpus-free machine learning method is based on gradient boosting classifier is used to detect whether a disease is denied, not mentioned or presented in the text. The detector classifies negations for five diseases and shows average F-score from 0.81 to 0.93. The benefits of negation detection have been demonstrated by predicting the presence of surgery for patients with the acute coronary syndrome.

View on arXiv
Comments on this paper