ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.05048
17
8

Hyperspectral Image Clustering with Spatially-Regularized Ultrametrics

10 April 2020
Shukun Zhang
James M. Murphy
ArXiv (abs)PDFHTML
Abstract

We propose a method for the unsupervised clustering of hyperspectral images based on spatially regularized spectral clustering with ultrametric path distances. The proposed method efficiently combines data density and geometry to distinguish between material classes in the data, without the need for training labels. The proposed method is efficient, with quasilinear scaling in the number of data points, and enjoys robust theoretical performance guarantees. Extensive experiments on synthetic and real HSI data demonstrate its strong performance compared to benchmark and state-of-the-art methods. In particular, the proposed method achieves not only excellent labeling accuracy, but also efficiently estimates the number of clusters.

View on arXiv
Comments on this paper