Demonstration is an appealing way for humans to provide assistance to reinforcement-learning agents. Most approaches in this area view demonstrations primarily as sources of behavioral bias. But in sparse-reward tasks, humans seem to treat demonstrations more as sources of causal knowledge. This paper proposes a framework for agents that benefit from demonstration in this human-inspired way. In this framework, agents develop causal models through observation, and reason from this knowledge to decompose tasks for effective reinforcement learning. Experimental results show that a basic implementation of Reasoning from Demonstration (RfD) is effective in a range of sparse-reward tasks.
View on arXiv