ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.05523
14
148

DeepEDN: A Deep Learning-based Image Encryption and Decryption Network for Internet of Medical Things

12 April 2020
Yi Ding
Guozheng Wu
Dajiang Chen
Ning Zhang
Linpeng Gong
Mingsheng Cao
Zhiguang Qin
    MedIm
ArXivPDFHTML
Abstract

Internet of Medical Things (IoMT) can connect many medical imaging equipments to the medical information network to facilitate the process of diagnosing and treating for doctors. As medical image contains sensitive information, it is of importance yet very challenging to safeguard the privacy or security of the patient. In this work, a deep learning based encryption and decryption network (DeepEDN) is proposed to fulfill the process of encrypting and decrypting the medical image. Specifically, in DeepEDN, the Cycle-Generative Adversarial Network (Cycle-GAN) is employed as the main learning network to transfer the medical image from its original domain into the target domain. Target domain is regarded as a "Hidden Factors" to guide the learning model for realizing the encryption. The encrypted image is restored to the original (plaintext) image through a reconstruction network to achieve an image decryption. In order to facilitate the data mining directly from the privacy-protected environment, a region of interest(ROI)-mining-network is proposed to extract the interested object from the encrypted image. The proposed DeepEDN is evaluated on the chest X-ray dataset. Extensive experimental results and security analysis show that the proposed method can achieve a high level of security with a good performance in efficiency.

View on arXiv
Comments on this paper