28
6

A function space analysis of finite neural networks with insights from sampling theory

Abstract

This work suggests using sampling theory to analyze the function space represented by neural networks. First, it shows, under the assumption of a finite input domain, which is the common case in training neural networks, that the function space generated by multi-layer networks with non-expansive activation functions is smooth. This extends over previous works that show results for the case of infinite width ReLU networks. Then, under the assumption that the input is band-limited, we provide novel error bounds for univariate neural networks. We analyze both deterministic uniform and random sampling showing the advantage of the former.

View on arXiv
Comments on this paper