90

MXR-U-Nets for Real Time Hyperspectral Reconstruction

Abstract

In recent times, CNNs have made significant contributions to applications in image generation, super-resolution and style transfer. In this paper, we build upon the work of Howard and Gugger, He et al. and Misra, D. and propose a CNN architecture that accurately reconstructs hyperspectral images from their RGB counterparts. We also propose a much shallower version of our best model with a 10% relative memory footprint and 3x faster inference, thus enabling real-time video applications while still experiencing only about a 0.5% decrease in performance.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.