ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07031
14
18

SenseCare: A Research Platform for Medical Image Informatics and Interactive 3D Visualization

3 April 2020
Qi Duan
Guotai Wang
Rui Wang
Chaohao Fu
Xinjun Li
Na Wang
Yechong Huang
Xiaodi Huang
Maoliang Gong
Liang Zhao
Xinglong Liu
Qing Xia
Zhiqiang Hu
Ning Huang
Shaoting Zhang
ArXivPDFHTML
Abstract

Clinical research on smart health has an increasing demand for intelligent and clinic-oriented medical image computing algorithms and platforms that support various applications. To this end, we have developed SenseCare research platform, which is designed to facilitate translational research on intelligent diagnosis and treatment planning in various clinical scenarios. To enable clinical research with Artificial Intelligence (AI), SenseCare provides a range of AI toolkits for different tasks, including image segmentation, registration, lesion and landmark detection from various image modalities ranging from radiology to pathology. In addition, SenseCare is clinic-oriented and supports a wide range of clinical applications such as diagnosis and surgical planning for lung cancer, pelvic tumor, coronary artery disease, etc. SenseCare provides several appealing functions and features such as advanced 3D visualization, concurrent and efficient web-based access, fast data synchronization and high data security, multi-center deployment, support for collaborative research, etc. In this report, we present an overview of SenseCare as an efficient platform providing comprehensive toolkits and high extensibility for intelligent image analysis and clinical research in different application scenarios. We also summarize the research outcome through the collaboration with multiple hospitals.

View on arXiv
Comments on this paper