ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07353
8
5

Nucleus I: Adjunction spectra in recommender systems and descent

15 April 2020
Dusko Pavlovic
Dominic J.D.Hughes
ArXivPDFHTML
Abstract

Recommender systems build user profiles using concept analysis of usage matrices. The concepts are mined as spectra and form Galois connections. Descent is a general method for spectral decomposition in algebraic geometry and topology which also leads to generalized Galois connections. Both recommender systems and descent theory are vast research areas, separated by a technical gap so large that trying to establish a link would seem foolish. Yet a formal link emerged, all on its own, bottom-up, against authors' intentions and better judgment. Familiar problems of data analysis led to a novel solution in category theory. The present paper arose from a series of earlier efforts to provide a top-down account of these developments.

View on arXiv
Comments on this paper