ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07923
9
0

Deep Neural Network (DNN) for Water/Fat Separation: Supervised Training, Unsupervised Training, and No Training

16 April 2020
Ramin Jafari
P. Spincemaille
Jinwei Zhang
Thanh D. Nguyen
Martin R. Prince
Xianfu Luo
Junghun Cho
Dan Margolis
Y. Wang
ArXivPDFHTML
Abstract

Purpose: To use a deep neural network (DNN) for solving the optimization problem of water/fat separation and to compare supervised and unsupervised training. Methods: The current T2*-IDEAL algorithm for solving fat/water separation is dependent on initialization. Recently, deep neural networks (DNN) have been proposed to solve fat/water separation without the need for suitable initialization. However, this approach requires supervised training of DNN (STD) using the reference fat/water separation images. Here we propose two novel DNN water/fat separation methods 1) unsupervised training of DNN (UTD) using the physical forward problem as the cost function during training, and 2) no-training of DNN (NTD) using physical cost and backpropagation to directly reconstruct a single dataset. The STD, UTD and NTD methods were compared with the reference T2*-IDEAL. Results: All DNN methods generated consistent water/fat separation results that agreed well with T2*-IDEAL under proper initialization. Conclusion: The water/fat separation problem can be solved using unsupervised deep neural networks.

View on arXiv
Comments on this paper