147

Fast and Accurate Deep Bidirectional Language Representations for Unsupervised Learning

Annual Meeting of the Association for Computational Linguistics (ACL), 2020
Abstract

Even though BERT achieves successful performance improvements in various supervised learning tasks, applying BERT for unsupervised tasks still holds a limitation that it requires repetitive inference for computing contextual language representations. To resolve the limitation, we propose a novel deep bidirectional language model called Transformer-based Text Autoencoder (T-TA). The T-TA computes contextual language representations without repetition and has benefits of the deep bidirectional architecture like BERT. In run-time experiments on CPU environments, the proposed T-TA performs over six times faster than the BERT-based model in the reranking task and twelve times faster in the semantic similarity task. Furthermore, the T-TA shows competitive or even better accuracies than those of BERT on the above tasks.

View on arXiv
Comments on this paper