ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08371
10
3

Exploring the Combination of Contextual Word Embeddings and Knowledge Graph Embeddings

17 April 2020
Lea Dieudonat
Kelvin Han
Phyllicia Leavitt
Esteban Marquer
ArXivPDFHTML
Abstract

``Classical'' word embeddings, such as Word2Vec, have been shown to capture the semantics of words based on their distributional properties. However, their ability to represent the different meanings that a word may have is limited. Such approaches also do not explicitly encode relations between entities, as denoted by words. Embeddings of knowledge bases (KB) capture the explicit relations between entities denoted by words, but are not able to directly capture the syntagmatic properties of these words. To our knowledge, recent research have focused on representation learning that augment the strengths of one with the other. In this work, we begin exploring another approach using contextual and KB embeddings jointly at the same level and propose two tasks -- an entity typing and a relation typing task -- that evaluate the performance of contextual and KB embeddings. We also evaluated a concatenated model of contextual and KB embeddings with these two tasks, and obtain conclusive results on the first task. We hope our work may contribute as a basis for models and datasets that develop in the direction of this approach.

View on arXiv
Comments on this paper