ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08883
15
0

Variational Policy Propagation for Multi-agent Reinforcement Learning

19 April 2020
C. Qu
Hui Li
Chang-rui Liu
Junwu Xiong
James Y. Zhang
Wei Chu
Weiqiang Wang
Yuan Qi
L. Song
ArXivPDFHTML
Abstract

We propose a \emph{collaborative} multi-agent reinforcement learning algorithm named variational policy propagation (VPP) to learn a \emph{joint} policy through the interactions over agents. We prove that the joint policy is a Markov Random Field under some mild conditions, which in turn reduces the policy space effectively. We integrate the variational inference as special differentiable layers in policy such that the actions can be efficiently sampled from the Markov Random Field and the overall policy is differentiable. We evaluate our algorithm on several large scale challenging tasks and demonstrate that it outperforms previous state-of-the-arts.

View on arXiv
Comments on this paper