ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.09927
11
79

TTNet: Real-time temporal and spatial video analysis of table tennis

21 April 2020
Roman Voeikov
Nikolay S Falaleev
Ruslan Baikulov
    ViT
ArXivPDFHTML
Abstract

We present a neural network TTNet aimed at real-time processing of high-resolution table tennis videos, providing both temporal (events spotting) and spatial (ball detection and semantic segmentation) data. This approach gives core information for reasoning score updates by an auto-referee system. We also publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events, semantic segmentation masks, and ball coordinates for evaluation of multi-task approaches, primarily oriented on spotting of quick events and small objects tracking. TTNet demonstrated 97.0% accuracy in game events spotting along with 2 pixels RMSE in ball detection with 97.5% accuracy on the test part of the presented dataset. The proposed network allows the processing of downscaled full HD videos with inference time below 6 ms per input tensor on a machine with a single consumer-grade GPU. Thus, we are contributing to the development of real-time multi-task deep learning applications and presenting approach, which is potentially capable of substituting manual data collection by sports scouts, providing support for referees' decision-making, and gathering extra information about the game process.

View on arXiv
Comments on this paper