ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.09995
43
17
v1v2v3 (latest)

Learning Local Neighboring Structure for Robust 3D Shape Representation

21 April 2020
Zhongpai Gao
Junchi Yan
Guangtao Zhai
Juyong Zhang
Yiyan Yang
Xiaokang Yang
    3DV
ArXiv (abs)PDFHTML
Abstract

Mesh is a powerful data structure for 3D shapes. Representation learning for 3D meshes is important in many computer vision and graphics applications. The recent success of convolutional neural networks (CNNs) for structured data (e.g., images) suggests the value of adapting insight from CNN for 3D shapes. However, 3D shape data are irregular since each node's neighbors are unordered. Various graph neural networks for 3D shapes have been developed with isotropic filters or predefined local coordinate systems to overcome the node inconsistency on graphs. However, isotropic filters or predefined local coordinate systems limit the representation power. In this paper, we propose a local structure-aware anisotropic convolutional operation (LSA-Conv) that learns adaptive weighting matrices for each node according to the local neighboring structure and performs shared anisotropic filters. In fact, the learnable weighting matrix is similar to the attention matrix in the random synthesizer -- a new Transformer model for natural language processing (NLP). Comprehensive experiments demonstrate that our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.

View on arXiv
Comments on this paper