ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.10468
17
0

SoQal: Selective Oracle Questioning in Active Learning

22 April 2020
Dani Kiyasseh
T. Zhu
David A. Clifton
ArXivPDFHTML
Abstract

Large sets of unlabelled data within the healthcare domain remain underutilized. Active learning offers a way to exploit these datasets by iteratively requesting an oracle (e.g. medical professional) to label instances. This process, which can be costly and time-consuming is overly-dependent upon an oracle. To alleviate this burden, we propose SoQal, a questioning strategy that dynamically determines when a label should be requested from an oracle. We perform experiments on five publically-available datasets and illustrate SoQal's superiority relative to baseline approaches, including its ability to reduce oracle label requests by up to 35%. SoQal also performs competitively in the presence of label noise: a scenario that simulates clinicians' uncertain diagnoses when faced with difficult classification tasks.

View on arXiv
Comments on this paper