ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11077
10
5

Quantaized Winograd/Toom-Cook Convolution for DNNs: Beyond Canonical Polynomials Base

23 April 2020
B. Barabasz
    MQ
ArXivPDFHTML
Abstract

The problem how to speed up the convolution computations in Deep Neural Networks is widely investigated in recent years. The Winograd convolution algorithm is a common used method that significantly reduces time consumption. However, it suffers from a problem with numerical accuracy particularly for lower precisions. In this paper we present the application of base change technique for quantized Winograd-aware training model. We show that we can train the 888 bit quantized network to nearly the same accuracy (up to 0.5% loss) for tested network (Resnet18) and dataset (CIFAR10) as for quantized direct convolution with few additional operations in pre/post transformations. Keeping Hadamard product on 999 bits allow us to obtain the same accuracy as for direct convolution.

View on arXiv
Comments on this paper