ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11293
12
53

Intermittent Inference with Nonuniformly Compressed Multi-Exit Neural Network for Energy Harvesting Powered Devices

23 April 2020
Yawen Wu
Zhepeng Wang
Zhenge Jia
Yiyu Shi
J. Hu
ArXivPDFHTML
Abstract

This work aims to enable persistent, event-driven sensing and decision capabilities for energy-harvesting (EH)-powered devices by deploying lightweight DNNs onto EH-powered devices. However, harvested energy is usually weak and unpredictable and even lightweight DNNs take multiple power cycles to finish one inference. To eliminate the indefinite long wait to accumulate energy for one inference and to optimize the accuracy, we developed a power trace-aware and exit-guided network compression algorithm to compress and deploy multi-exit neural networks to EH-powered microcontrollers (MCUs) and select exits during execution according to available energy. The experimental results show superior accuracy and latency compared with state-of-the-art techniques.

View on arXiv
Comments on this paper