ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11483
48
2
v1v2 (latest)

Spatiotemporal data analysis with chronological networks

23 April 2020
L. N. Ferreira
D. Vega-Oliveros
M. Cotacallapa
M. Cardoso
M. G. Quiles
Liang Zhao
E. Macau
    GNNAI4TS
ArXiv (abs)PDFHTML
Abstract

The amount and size of spatiotemporal data sets from different domains have been rapidly increasing in the last years, which demands the development of robust and fast methods to analyze and extract information from them. In this paper, we propose a network-based model for spatiotemporal data analysis called chronnet. It consists of dividing a geometrical space into grid cells represented by nodes connected chronologically. The main goal of this model is to represent consecutive recurrent events between cells with strong links in the network. This representation permits the use of network science and graphing mining tools to extract information from spatiotemporal data. The chronnet construction process is fast, which makes it suitable for large data sets. In this paper, we describe how to use our model considering artificial and real data. For this purpose, we propose an artificial spatiotemporal data set generator to show how chronnets capture not just simple statistics, but also frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Additionally, we analyze a real-world data set composed of global fire detections, in which we describe the frequency of fire events, outlier fire detections, and the seasonal activity, using a single chronnet.

View on arXiv
Comments on this paper