ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12178
13
16

Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection

25 April 2020
Dongzhan Zhou
Xinchi Zhou
Hongwen Zhang
Shuai Yi
Wanli Ouyang
    VLM
ArXivPDFHTML
Abstract

In this paper, we propose a general and efficient pre-training paradigm, Montage pre-training, for object detection. Montage pre-training needs only the target detection dataset while taking only 1/4 computational resources compared to the widely adopted ImageNet pre-training.To build such an efficient paradigm, we reduce the potential redundancy by carefully extracting useful samples from the original images, assembling samples in a Montage manner as input, and using an ERF-adaptive dense classification strategy for model pre-training. These designs include not only a new input pattern to improve the spatial utilization but also a novel learning objective to expand the effective receptive field of the pretrained model. The efficiency and effectiveness of Montage pre-training are validated by extensive experiments on the MS-COCO dataset, where the results indicate that the models using Montage pre-training are able to achieve on-par or even better detection performances compared with the ImageNet pre-training.

View on arXiv
Comments on this paper