ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12352
92
34
v1v2 (latest)

Joint Liver Lesion Segmentation and Classification via Transfer Learning

26 April 2020
Michal Heker
H. Greenspan
    MedIm
ArXiv (abs)PDFHTML
Abstract

Transfer learning and joint learning approaches are extensively used to improve the performance of Convolutional Neural Networks (CNNs). In medical imaging applications in which the target dataset is typically very small, transfer learning improves feature learning while joint learning has shown effectiveness in improving the network's generalization and robustness. In this work, we study the combination of these two approaches for the problem of liver lesion segmentation and classification. For this purpose, 332 abdominal CT slices containing lesion segmentation and classification of three lesion types are evaluated. For feature learning, the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge is used. Joint learning shows improvement in both segmentation and classification results. We show that a simple joint framework outperforms the commonly used multi-task architecture (Y-Net), achieving an improvement of 10% in classification accuracy, compared to a 3% improvement with Y-Net.

View on arXiv
Comments on this paper