ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12668
12
21

OR-UNet: an Optimized Robust Residual U-Net for Instrument Segmentation in Endoscopic Images

27 April 2020
Fabian Isensee
Klaus H. Maier-Hein
ArXivPDFHTML
Abstract

Segmentation of endoscopic images is an essential processing step for computer and robotics-assisted interventions. The Robust-MIS challenge provides the largest dataset of annotated endoscopic images to date, with 5983 manually annotated images. Here we describe OR-UNet, our optimized robust residual 2D U-Net for endoscopic image segmentation. As the name implies, the network makes use of residual connections in the encoder. It is trained with the sum of Dice and cross-entropy loss and deep supervision. During training, extensive data augmentation is used to increase the robustness. In an 8-fold cross-validation on the training images, our model achieved a mean (median) Dice score of 87.41 (94.35). We use the eight models from the cross-validation as an ensemble on the test set.

View on arXiv
Comments on this paper