ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14858
13
13

MuSe 2020 -- The First International Multimodal Sentiment Analysis in Real-life Media Challenge and Workshop

30 April 2020
Lukas Stappen
Alice Baird
Georgios Rizos
Panagiotis Tzirakis
Xinchen Du
Felix Hafner
Lea Schumann
Adria Mallol-Ragolta
Björn W. Schuller
I. Lefter
Erik Cambria
Y. Kompatsiaris
ArXivPDFHTML
Abstract

Multimodal Sentiment Analysis in Real-life Media (MuSe) 2020 is a Challenge-based Workshop focusing on the tasks of sentiment recognition, as well as emotion-target engagement and trustworthiness detection by means of more comprehensively integrating the audio-visual and language modalities. The purpose of MuSe 2020 is to bring together communities from different disciplines; mainly, the audio-visual emotion recognition community (signal-based), and the sentiment analysis community (symbol-based). We present three distinct sub-challenges: MuSe-Wild, which focuses on continuous emotion (arousal and valence) prediction; MuSe-Topic, in which participants recognise domain-specific topics as the target of 3-class (low, medium, high) emotions; and MuSe-Trust, in which the novel aspect of trustworthiness is to be predicted. In this paper, we provide detailed information on MuSe-CaR, the first of its kind in-the-wild database, which is utilised for the challenge, as well as the state-of-the-art features and modelling approaches applied. For each sub-challenge, a competitive baseline for participants is set; namely, on test we report for MuSe-Wild a combined (valence and arousal) CCC of .2568, for MuSe-Topic a score (computed as 0.34⋅\cdot⋅ UAR + 0.66⋅\cdot⋅F1) of 76.78 % on the 10-class topic and 40.64 % on the 3-class emotion prediction, and for MuSe-Trust a CCC of .4359.

View on arXiv
Comments on this paper