ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00270
32
63
v1v2v3 (latest)

Decentralized Edge-to-Cloud Load-balancing: Service Placement for the Internet of Things

1 May 2020
Zeinab Nezami
K. Zamanifar
K. Djemame
Evangelos Pournaras
ArXiv (abs)PDFHTML
Abstract

Internet of Things (IoT) requires a new processing paradigm that inherits the scalability of the cloud while minimizing network latency using resources closer to the network edge. Building up such flexibility within the edge-to-cloud continuum consisting of a distributed networked ecosystem of heterogeneous computing resources is challenging. Load-balancing for fog computing becomes a cornerstone for cost-effective system management and operations. This paper studies two optimization objectives and formulates a decentralized load-balancing problem for IoT service placement: (global) IoT workload balance and (local) quality of service, in terms of minimizing the cost of deadline violation, service deployment, and unhosted services. The proposed solution, EPOS Fog, introduces a decentralized multiagent system for collective learning that utilizes edge-to-cloud nodes to jointly balance the input workload across the network and minimize the costs involved in service execution. The agents locally generate possible assignments of requests to resources and then cooperatively select an assignment such that their combination maximizes edge utilization while minimizes service execution cost. Extensive experimental evaluation with realistic Google cluster workloads on various networks demonstrates the superior performance of EPOS Fog in terms of workload balance and quality of service, compared to approaches such as First Fit and exclusively Cloud-based. The findings demonstrate how distributed computational resources on the edge can be utilized more cost-effectively by harvesting collective intelligence.

View on arXiv
Comments on this paper