ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00364
6
5

Generative Adversarial Data Programming

30 April 2020
Arghya Pal
V. Balasubramanian
    VLM
    GAN
ArXivPDFHTML
Abstract

The paucity of large curated hand-labeled training data forms a major bottleneck in the deployment of machine learning models in computer vision and other fields. Recent work (Data Programming) has shown how distant supervision signals in the form of labeling functions can be used to obtain labels for given data in near-constant time. In this work, we present Adversarial Data Programming (ADP), which presents an adversarial methodology to generate data as well as a curated aggregated label, given a set of weak labeling functions. More interestingly, such labeling functions are often easily generalizable, thus allowing our framework to be extended to different setups, including self-supervised labeled image generation, zero-shot text to labeled image generation, transfer learning, and multi-task learning.

View on arXiv
Comments on this paper