ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01992
29
97

Post-hoc explanation of black-box classifiers using confident itemsets

5 May 2020
M. Moradi
Matthias Samwald
ArXivPDFHTML
Abstract

Black-box Artificial Intelligence (AI) methods, e.g. deep neural networks, have been widely utilized to build predictive models that can extract complex relationships in a dataset and make predictions for new unseen data records. However, it is difficult to trust decisions made by such methods since their inner working and decision logic is hidden from the user. Explainable Artificial Intelligence (XAI) refers to systems that try to explain how a black-box AI model produces its outcomes. Post-hoc XAI methods approximate the behavior of a black-box by extracting relationships between feature values and the predictions. Perturbation-based and decision set methods are among commonly used post-hoc XAI systems. The former explanators rely on random perturbations of data records to build local or global linear models that explain individual predictions or the whole model. The latter explanators use those feature values that appear more frequently to construct a set of decision rules that produces the same outcomes as the target black-box. However, these two classes of XAI methods have some limitations. Random perturbations do not take into account the distribution of feature values in different subspaces, leading to misleading approximations. Decision sets only pay attention to frequent feature values and miss many important correlations between features and class labels that appear less frequently but accurately represent decision boundaries of the model. In this paper, we address the above challenges by proposing an explanation method named Confident Itemsets Explanation (CIE). We introduce confident itemsets, a set of feature values that are highly correlated to a specific class label. CIE utilizes confident itemsets to discretize the whole decision space of a model to smaller subspaces.

View on arXiv
Comments on this paper