ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02274
22
7
v1v2v3 (latest)

Online Convex Optimization with Binary Constraints

5 May 2020
Antoine Lesage-Landry
Joshua A. Taylor
Duncan S. Callaway
ArXiv (abs)PDFHTML
Abstract

We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent (bOGD), and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizons. First, we present the regret as the sum of the relaxed, continuous round optimum tracking error and the rounding error of our update in which the former asymptomatically decreases with time under certain conditions. Then, we derive a finite-time bound that is sublinear in time and linear in the cumulative variation of the relaxed, continuous round optima. We apply bOGD to demand response with thermostatically controlled loads, in which binary constraints model discrete on/off settings. We also model uncertainty and varying load availability, which depend on temperature deadbands, lockout of cooling units and manual overrides. We test the performance of bOGD in several simulations based on demand response.

View on arXiv
Comments on this paper