ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02354
26
23

It's Easier to Translate out of English than into it: Measuring Neural Translation Difficulty by Cross-Mutual Information

5 May 2020
Emanuele Bugliarello
Sabrina J. Mielke
Antonios Anastasopoulos
Ryan Cotterell
Naoaki Okazaki
ArXivPDFHTML
Abstract

The performance of neural machine translation systems is commonly evaluated in terms of BLEU. However, due to its reliance on target language properties and generation, the BLEU metric does not allow an assessment of which translation directions are more difficult to model. In this paper, we propose cross-mutual information (XMI): an asymmetric information-theoretic metric of machine translation difficulty that exploits the probabilistic nature of most neural machine translation models. XMI allows us to better evaluate the difficulty of translating text into the target language while controlling for the difficulty of the target-side generation component independent of the translation task. We then present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems. Code for replicating our experiments is available online at https://github.com/e-bug/nmt-difficulty.

View on arXiv
Comments on this paper