ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.03161
13
146

MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation

6 May 2020
Sanjay Kariyappa
A. Prakash
Moinuddin K. Qureshi
    AAML
ArXivPDFHTML
Abstract

Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities. This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack. Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x.

View on arXiv
Comments on this paper