15
7

Non-linear Log-Sobolev inequalities for the Potts semigroup and applications to reconstruction problems

Abstract

Consider the semigroup of random walk on a complete graph, which we call the Potts semigroup. Diaconis and Saloff-Coste computed the maximum of the ratio of the relative entropy and the Dirichlet form obtaining the constant α2\alpha_2 in the 22-log-Sobolev inequality (22-LSI). In this paper, we obtain the best possible non-linear inequality relating entropy and the Dirichlet form (i.e., pp-NLSI, p1p\ge1). As an example, we show α1=1+1+o(1)logk\alpha_1 = 1+\frac{1+o(1)}{\log k}. By integrating the 11-NLSI we obtain the new strong data processing inequality (SDPI), which in turn allows us to improve results of Mossel and Peres on reconstruction thresholds for Potts models on trees. A special case is the problem of reconstructing color of the root of a kk-colored tree given knowledge of colors of all the leaves. We show that to have a non-trivial reconstruction probability the branching number of the tree should be at least \frac{\log k}{\log k - \log(k-1)} = (1-o(1))k\log k. This recovers previous results (of Sly and Bhatnagar et al.) in (slightly) more generality, but more importantly avoids the need for any coloring-specialized arguments. Similarly, we improve the state-of-the-art on the weak recovery threshold for the stochastic block model with kk balanced groups, for all k3k\ge 3. To further show the power of our method, we prove optimal non-reconstruction results for a broadcasting on trees model with Gaussian kernels, closing a gap left open by Eldan et al. These improvements advocate information-theoretic methods as a useful complement to the conventional techniques originating from the statistical physics.

View on arXiv
Comments on this paper