ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07380
25
14

Bayesian model inversion using stochastic spectral embedding

15 May 2020
Paul Wagner
S. Marelli
Bruno Sudret
ArXivPDFHTML
Abstract

In this paper we propose a new sampling-free approach to solve Bayesian model inversion problems that is an extension of the previously proposed spectral likelihood expansions (SLE) method. Our approach, called stochastic spectral likelihood embedding (SSLE), uses the recently presented stochastic spectral embedding (SSE) method for local spectral expansion refinement to approximate the likelihood function at the core of Bayesian inversion problems. We show that, similar to SLE, this approach results in analytical expressions for key statistics of the Bayesian posterior distribution, such as evidence, posterior moments and posterior marginals, by direct post-processing of the expansion coefficients. Because SSLE and SSE rely on the direct approximation of the likelihood function, they are in a way independent of the computational/mathematical complexity of the forward model. We further enhance the efficiency of SSLE by introducing a likelihood specific adaptive sample enrichment scheme. To showcase the performance of the proposed SSLE, we solve three problems that exhibit different kinds of complexity in the likelihood function: multimodality, high posterior concentration and high nominal dimensionality. We demonstrate how SSLE significantly improves on SLE, and present it as a promising alternative to existing inversion frameworks.

View on arXiv
Comments on this paper