ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07568
76
19
v1v2 (latest)

Graphical modeling of stochastic processes driven by correlated errors

15 May 2020
Søren Wengel Mogensen
N. Hansen
ArXiv (abs)PDFHTML
Abstract

We study a class of graphs that represent local independence structures in stochastic processes allowing for correlated error processes. Several graphs may encode the same local independencies and we characterize such equivalence classes of graphs. In the worst case, the number of conditions in our characterizations grows superpolynomially as a function of the size of the node set in the graph. We show that deciding Markov equivalence is coNP-complete which suggests that our characterizations cannot be improved upon substantially. We prove a global Markov property in the case of a multivariate Ornstein-Uhlenbeck process which is driven by correlated Brownian motions.

View on arXiv
Comments on this paper