ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.08027
12
0
v1v2v3 (latest)

An Effective and Efficient Initialization Scheme for Training Multi-layer Feedforward Neural Networks

16 May 2020
Zebin Yang
Hengtao Zhang
Agus Sudjianto
Aijun Zhang
ArXiv (abs)PDFHTML
Abstract

Network initialization is the first and critical step for training neural networks. In this paper, we propose a novel network initialization scheme based on the celebrated Stein's identity. By viewing multi-layer feedforward neural networks as cascades of multi-index models, the projection weights to the first hidden layer are initialized using eigenvectors of the cross-moment matrix between the input's second-order score function and the response. The input data is then forward propagated to the next layer and such a procedure can be repeated until all the hidden layers are initialized. Finally, the weights for the output layer are initialized by generalized linear modeling. Such a proposed SteinGLM method is shown through extensive numerical results to be much faster and more accurate than other popular methods commonly used for training neural networks.

View on arXiv
Comments on this paper