ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.08575
9
147

Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio Representation

18 May 2020
Po-Han Chi
Pei-Hung Chung
Tsung-Han Wu
Chun-Cheng Hsieh
Yen-Hao Chen
Shang-Wen Li
Hung-yi Lee
    SSL
ArXivPDFHTML
Abstract

For self-supervised speech processing, it is crucial to use pretrained models as speech representation extractors. In recent works, increasing the size of the model has been utilized in acoustic model training in order to achieve better performance. In this paper, we propose Audio ALBERT, a lite version of the self-supervised speech representation model. We use the representations with two downstream tasks, speaker identification, and phoneme classification. We show that Audio ALBERT is capable of achieving competitive performance with those huge models in the downstream tasks while utilizing 91\% fewer parameters. Moreover, we use some simple probing models to measure how much the information of the speaker and phoneme is encoded in latent representations. In probing experiments, we find that the latent representations encode richer information of both phoneme and speaker than that of the last layer.

View on arXiv
Comments on this paper