ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09112
14
20

Measles Rash Identification Using Residual Deep Convolutional Neural Network

18 May 2020
Kimberly Glock
Charles Napier
Vibhuti Gupta
Todd Gary
J. Gigante
W. Schaffner
Qingguo Wang
ArXivPDFHTML
Abstract

Measles is extremely contagious and is one of the leading causes of vaccine-preventable illness and death in developing countries, claiming more than 100,000 lives each year. Measles was declared eliminated in the US in 2000 due to decades of successful vaccination for the measles. As a result, an increasing number of US healthcare professionals and the public have never seen the disease. Unfortunately, the Measles resurged in the US in 2019 with 1,282 confirmed cases. To assist in diagnosing measles, we collected more than 1300 images of a variety of skin conditions, with which we employed residual deep convolutional neural network to distinguish measles rash from other skin conditions, in an aim to create a phone application in the future. On our image dataset, our model reaches a classification accuracy of 95.2%, sensitivity of 81.7%, and specificity of 97.1%, indicating the model is effective in facilitating an accurate detection of measles to help contain measles outbreaks.

View on arXiv
Comments on this paper