ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11212
16
40

Symbolic Pregression: Discovering Physical Laws from Distorted Video

19 May 2020
S. Udrescu
Max Tegmark
ArXivPDFHTML
Abstract

We present a method for unsupervised learning of equations of motion for objects in raw and optionally distorted unlabeled video. We first train an autoencoder that maps each video frame into a low-dimensional latent space where the laws of motion are as simple as possible, by minimizing a combination of non-linearity, acceleration and prediction error. Differential equations describing the motion are then discovered using Pareto-optimal symbolic regression. We find that our pre-regression ("pregression") step is able to rediscover Cartesian coordinates of unlabeled moving objects even when the video is distorted by a generalized lens. Using intuition from multidimensional knot-theory, we find that the pregression step is facilitated by first adding extra latent space dimensions to avoid topological problems during training and then removing these extra dimensions via principal component analysis.

View on arXiv
Comments on this paper