ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11313
6
7

Comparative Study of Machine Learning Models and BERT on SQuAD

22 May 2020
Devshree Patel
Param Raval
Ratnam Parikh
Yesha Shastri
ArXivPDFHTML
Abstract

This study aims to provide a comparative analysis of performance of certain models popular in machine learning and the BERT model on the Stanford Question Answering Dataset (SQuAD). The analysis shows that the BERT model, which was once state-of-the-art on SQuAD, gives higher accuracy in comparison to other models. However, BERT requires a greater execution time even when only 100 samples are used. This shows that with increasing accuracy more amount of time is invested in training the data. Whereas in case of preliminary machine learning models, execution time for full data is lower but accuracy is compromised.

View on arXiv
Comments on this paper