ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11378
32
10

Estimation of cluster functionals for regularly varying time series: sliding blocks estimators

22 May 2020
Youssouph Cissokho
Rafal Kulik
ArXiv (abs)PDFHTML
Abstract

Cluster indices describe extremal behaviour of stationary time series. We consider their sliding blocks estimators. Using a modern theory of multivariate, regularly varying time series, we obtain central limit theorems under conditions that can be easily verified for a large class of models. In particular, we show that in the Peak over Threshold framework, sliding and disjoint blocks estimators have the same limiting variance.

View on arXiv
Comments on this paper