ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.12394
11
25

Meta-Reinforcement Learning for Trajectory Design in Wireless UAV Networks

25 May 2020
Ye Hu
Mingzhe Chen
Walid Saad
H. Vincent Poor
Shuguang Cui
ArXivPDFHTML
Abstract

In this paper, the design of an optimal trajectory for an energy-constrained drone operating in dynamic network environments is studied. In the considered model, a drone base station (DBS) is dispatched to provide uplink connectivity to ground users whose demand is dynamic and unpredictable. In this case, the DBS's trajectory must be adaptively adjusted to satisfy the dynamic user access requests. To this end, a meta-learning algorithm is proposed in order to adapt the DBS's trajectory when it encounters novel environments, by tuning a reinforcement learning (RL) solution. The meta-learning algorithm provides a solution that adapts the DBS in novel environments quickly based on limited former experiences. The meta-tuned RL is shown to yield a faster convergence to the optimal coverage in unseen environments with a considerably low computation complexity, compared to the baseline policy gradient algorithm. Simulation results show that, the proposed meta-learning solution yields a 25% improvement in the convergence speed, and about 10% improvement in the DBS' communication performance, compared to a baseline policy gradient algorithm. Meanwhile, the probability that the DBS serves over 50% of user requests increases about 27%, compared to the baseline policy gradient algorithm.

View on arXiv
Comments on this paper