ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.12962
15
1

A comparison of Vietnamese Statistical Parametric Speech Synthesis Systems

26 May 2020
Phan Huy Kinh
V. Phung
Anh-Tuan Dinh
Quoc Bao Nguyen
ArXivPDFHTML
Abstract

In recent years, statistical parametric speech synthesis (SPSS) systems have been widely utilized in many interactive speech-based systems (e.g.~Amazon's Alexa, Bose's headphones). To select a suitable SPSS system, both speech quality and performance efficiency (e.g.~decoding time) must be taken into account. In the paper, we compared four popular Vietnamese SPSS techniques using: 1) hidden Markov models (HMM), 2) deep neural networks (DNN), 3) generative adversarial networks (GAN), and 4) end-to-end (E2E) architectures, which consists of Tacontron~2 and WaveGlow vocoder in terms of speech quality and performance efficiency. We showed that the E2E systems accomplished the best quality, but required the power of GPU to achieve real-time performance. We also showed that the HMM-based system had inferior speech quality, but it was the most efficient system. Surprisingly, the E2E systems were more efficient than the DNN and GAN in inference on GPU. Surprisingly, the GAN-based system did not outperform the DNN in term of quality.

View on arXiv
Comments on this paper