ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.13736
10
63

L^2UWE: A Framework for the Efficient Enhancement of Low-Light Underwater Images Using Local Contrast and Multi-Scale Fusion

28 May 2020
T. Marques
A. Albu
ArXivPDFHTML
Abstract

Images captured underwater often suffer from suboptimal illumination settings that can hide important visual features, reducing their quality. We present a novel single-image low-light underwater image enhancer, L^2UWE, that builds on our observation that an efficient model of atmospheric lighting can be derived from local contrast information. We create two distinct models and generate two enhanced images from them: one that highlights finer details, the other focused on darkness removal. A multi-scale fusion process is employed to combine these images while emphasizing regions of higher luminance, saliency and local contrast. We demonstrate the performance of L^2UWE by using seven metrics to test it against seven state-of-the-art enhancement methods specific to underwater and low-light scenes. Code available at: https://github.com/tunai/l2uwe.

View on arXiv
Comments on this paper