ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14028
12
56

Joint Modelling of Emotion and Abusive Language Detection

28 May 2020
S. Rajamanickam
Pushkar Mishra
H. Yannakoudakis
Ekaterina Shutova
ArXivPDFHTML
Abstract

The rise of online communication platforms has been accompanied by some undesirable effects, such as the proliferation of aggressive and abusive behaviour online. Aiming to tackle this problem, the natural language processing (NLP) community has experimented with a range of techniques for abuse detection. While achieving substantial success, these methods have so far only focused on modelling the linguistic properties of the comments and the online communities of users, disregarding the emotional state of the users and how this might affect their language. The latter is, however, inextricably linked to abusive behaviour. In this paper, we present the first joint model of emotion and abusive language detection, experimenting in a multi-task learning framework that allows one task to inform the other. Our results demonstrate that incorporating affective features leads to significant improvements in abuse detection performance across datasets.

View on arXiv
Comments on this paper