ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14288
42
7
v1v2 (latest)

ePillID Dataset: A Low-Shot Fine-Grained Benchmark for Pill Identification

28 May 2020
Naoto Usuyama
N. Larios
Amanda K. Hall
Jessica Lundin
ArXiv (abs)PDFHTMLGithub (86★)
Abstract

Identifying prescription medications is a frequent task for patients and medical professionals; however, this is an error-prone task as many pills have similar appearances (e.g. white round pills), which increases the risk of medication errors. In this paper, we introduce ePillID, the largest public benchmark on pill image recognition, composed of 13k images representing 8184 appearance classes (two sides for 4092 pill types). For most of the appearance classes, there exists only one reference image, making it a challenging low-shot recognition setting. We present our experimental setup and evaluation results of various baseline models on the benchmark. The best baseline using a multi-head metric-learning approach with bilinear features performed remarkably well; however, our error analysis suggests that they still fail to distinguish particularly confusing classes. The code and data are available at \url{https://github.com/usuyama/ePillID-benchmark}.

View on arXiv
Comments on this paper