ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00247
25
0
v1v2v3 (latest)

Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures

30 May 2020
Fanghui Liu
Xiaolin Huang
Yingyi Chen
Johan A. K. Suykens
ArXiv (abs)PDFHTML
Abstract

In this paper, we attempt to solve a long-lasting open question for non-positive definite (non-PD) kernels in machine learning community: can a given non-PD kernel be decomposed into the difference of two PD kernels (termed as positive decomposition)? We cast this question as a distribution view by introducing the \emph{signed measure}, which transforms positive decomposition to measure decomposition: a series of non-PD kernels can be associated with the linear combination of specific finite Borel measures. In this manner, our distribution-based framework provides a sufficient and necessary condition to answer this open question. Specifically, this solution is also computationally implementable in practice to scale non-PD kernels in large sample cases, which allows us to devise the first random features algorithm to obtain an unbiased estimator. Experimental results on several benchmark datasets verify the effectiveness of our algorithm over the existing methods.

View on arXiv
Comments on this paper