ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00511
6
25

Incentive Mechanism Design for Resource Sharing in Collaborative Edge Learning

31 May 2020
Wei Yang Bryan Lim
Jer Shyuan Ng
Zehui Xiong
Dusit Niyato
Cyril Leung
C. Miao
Qiang Yang
    FedML
ArXivPDFHTML
Abstract

In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous. This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning, in which model training is executed at the edge of the network. In this article, we first introduce the principles and technologies of collaborative edge learning. Then, we establish that a successful, scalable implementation of edge learning requires the communication, caching, computation, and learning resources (3C-L) of end devices and edge servers to be leveraged jointly in an efficient manner. However, users may not consent to contribute their resources without receiving adequate compensation. In consideration of the heterogeneity of edge nodes, e.g., in terms of available computation resources, we discuss the challenges of incentive mechanism design to facilitate resource sharing for edge learning. Furthermore, we present a case study involving optimal auction design using Deep Learning to price fresh data contributed for edge learning. The performance evaluation shows the revenue maximizing properties of our proposed auction over the benchmark schemes.

View on arXiv
Comments on this paper