ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.02138
57
110
v1v2v3 (latest)

Integrating Deep Learning into CAD/CAE System: Generative Design and Evaluation of 3D Conceptual Wheel

25 May 2020
Soyoung Yoo
Sunghee Lee
Seongsin Kim
Kwang Hyeon Hwang
Jong Ho Park
Namwoo Kang
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed framework is demonstrated through a road wheel design case study and indicates that AI can be practically incorporated into an end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD models by using this framework along with the engineering performance results estimated by AI and find conceptual design candidates for the subsequent detailed design stage.

View on arXiv
Comments on this paper