We introduce a neural stack architecture, including a differentiable parametrized stack operator that approximates stack push and pop operations for suitable choices of parameters that explicitly represents a stack. We prove the stability of this stack architecture: after arbitrarily many stack operations, the state of the neural stack still closely resembles the state of the discrete stack. Using the neural stack with a recurrent neural network, we introduce a neural network Pushdown Automaton (nnPDA) and prove that nnPDA with finite/bounded neurons and time can simulate any PDA. Furthermore, we extend our construction and propose new architecture neural state Turing Machine (nnTM). We prove that differentiable nnTM with bounded neurons can simulate Turing Machine (TM) in real-time. Just like the neural stack, these architectures are also stable. Finally, we extend our construction to show that differentiable nnTM is equivalent to Universal Turing Machine (UTM) and can simulate any TM with only \textbf{seven finite/bounded precision} neurons. This work provides a new theoretical bound for the computational capability of bounded precision RNNs augmented with memory.
View on arXiv