ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04403
22
2

Global Robustness Verification Networks

8 June 2020
Weidi Sun
Yuteng Lu
Xiyue Zhang
Zhanxing Zhu
Meng Sun
    AAML
ArXivPDFHTML
Abstract

The wide deployment of deep neural networks, though achieving great success in many domains, has severe safety and reliability concerns. Existing adversarial attack generation and automatic verification techniques cannot formally verify whether a network is globally robust, i.e., the absence or not of adversarial examples in the input space. To address this problem, we develop a global robustness verification framework with three components: 1) a novel rule-based ``back-propagation'' finding which input region is responsible for the class assignment by logic reasoning; 2) a new network architecture Sliding Door Network (SDN) enabling feasible rule-based ``back-propagation''; 3) a region-based global robustness verification (RGRV) approach. Moreover, we demonstrate the effectiveness of our approach on both synthetic and real datasets.

View on arXiv
Comments on this paper