ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04695
10
0
v1v2 (latest)

Responsive Web User Interface to Recover Training Data from User Gradients in Federated Learning

8 June 2020
H. Lianto
Yang Zhao
Jun Zhao
    FedML
ArXiv (abs)PDFHTML
Abstract

Local differential privacy (LDP) is an emerging privacy standard to protect individual user data. One scenario where LDP can be applied is federated learning, where each user sends in his/her user gradients to an aggregator who uses these gradients to perform stochastic gradient descent. In a case where the aggregator is untrusted and LDP is not applied to each user gradient, the aggregator can recover sensitive user data from these gradients. In this paper, we present a new interactive web demo showcasing the power of local differential privacy by visualizing federated learning with local differential privacy. Moreover, the live demo shows how LDP can prevent untrusted aggregators from recovering sensitive training data. A measure called the exp-hamming recovery is also created to show the extent of how much data the aggregator can recover.

View on arXiv
Comments on this paper